
Customer: Nucleon
Date: January 24th, 2023

This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for
Nucleon

Approved By Noah Jelich | Lead Solidity SC Auditor at Hacken OU

Type Voting; Yield Farming

Platform CFX

Network Conflux

Language Solidity

Methodology Link

Website https://confluxnetwork.org/

Changelog
13.10.2022 – Initial Review
09.12.2022 - Second Review
19.01.2023 - Third Review
24.01.2023 - Fourth Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://confluxnetwork.org/

Table of contents
Introduction 4

Scope 4

Severity Definitions 6

Executive Summary 7

Checked Items 8

System Overview 11

Findings 12

Disclaimers 25

www.hacken.io
3

Introduction

Hacken OÜ (Consultant) was contracted by Nucleon (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

Scope

The scope of the project is smart contracts in the repository:

Initial review scope
Repository:

https://github.com/article-i/espace/tree/in-test
https://github.com/article-i/core-pos-pool/tree/test

Commit:
7a9aa71c9a7fe10d213b60ae9c75913dbba9d87b (espace)
8ce294e520127a973b2fbe6e626a545a8f904d31 (core-pos-pool)

Documentation:
Whitepaper (partial functional requirements provided)

Functional requirements

Integration and Unit Tests: No
Deployed Contracts Addresses: -
Contracts:

File: ./contracts/IExchange.sol
SHA3: 61eb39b071990344a69bc373650743c093b0ae1ac4aa34243d4fefac741cdd90

File: ./contracts/eSpace/CoreBridge_multipool.sol
SHA3: 6cdb4307022e9d0e13601b72f84ce35d006e99f8904e09c91d78f47e7f0e59f5

File: ./contracts/PoolContext.sol
SHA3: 94c801354857878c017680d3b15073e0881921ac0f28283b3cb199e81c94c625

File: ./contracts/PoSPoolmini.sol
SHA3: 8a03a2cb3f4f2c7a8ac9108ed86d9a056ee813eb38927d8efef58db4097445eb

File: ./contracts/VotePowerQueue.sol
SHA3: 681daac351c4b37e070998d30bfc9919a2a0c01e909ed4f89929942064504fa9

File: ./contracts/eSpace/Exchangeroom.sol
SHA3: b0f2248a7acb4eb698adc778e1720d3a1cd9c17bb027dba3d9007b2b6b9086be

File: ./contracts/eSpace/UnstakeQueueCFX.sol
SHA3: eced83c9430fa22112ce47a57e5335963be0839e807aa48cc4b8d5019a23295e

Second review scope
Repository:

https://github.com/article-i/espace/tree/in-test
https://github.com/article-i/core-pos-pool/tree/test

Commit:
c70be17a0bfebbe4a4456892b1f14a55b81356c2 (espace)
04cce4a32eb000ae279e1f0e6744f4f2d5fea4e6 (core-pos-pool)

www.hacken.io
4

https://github.com/article-i/espace/tree/in-test
https://github.com/article-i/core-pos-pool/tree/test
https://developer.confluxnetwork.org/conflux-doc/docs/EVM-Space/intro_of_evm_space/
https://developer.confluxnetwork.org/conflux-doc/docs/EVM-Space/intro_of_evm_space/
https://github.com/article-i/espace/tree/in-test
https://github.com/article-i/core-pos-pool/tree/test

Documentation:
Whitepaper (partial functional requirements provided)

Functional requirements

Integration and Unit Tests: No
Deployed Contracts Addresses: -
Contracts:

File: ./contracts/IExchange.sol
SHA3: 61eb39b071990344a69bc373650743c093b0ae1ac4aa34243d4fefac741cdd90

File: ./contracts/eSpace/CoreBridge_multipool.sol
SHA3: 643096ae32d343e8a2975ef6d7ce038ae4b6f604a817f7516da7598bce110899

File: ./contracts/PoolContext.sol
SHA3: 59121afe857833d89710964de2bfeb7c95faa3b7d4af0cb262e58a1744bfe451

File: ./contracts/PoSPoolmini.sol
SHA3: 1d59d96c351f84271d65e275ea7bf5873dc353aa91850f3b338aa8b3afbc64ff

File: ./contracts/VotePowerQueue.sol
SHA3: 32a11531531207f71349703260d35edfd20931ba531a0b8492dc818519d0fb89

File: ./contracts/eSpace/Exchangeroom.sol
SHA3: c54856d0b25ce97b5ea3f4734cec9c61571959880c5567f3e84cb67482fd2129

File: ./contracts/XCFX.sol
SHA3: 20aac8420a1000e1cf3e0cafaf71887e71e9ed7c053c15bbfd0c56c5e259e146

Third review scope
Repository:

https://github.com/article-i/espace/tree/in-test
https://github.com/article-i/core-pos-pool/tree/test

Commit:
b793f4db6cf6644bd046ae25c1c5c19682c45fb0 (espace)
35299a5071cda0ee1b51659c5608127b7ca92e9f (core-pos-pool)

Documentation:
Whitepaper (partial functional requirements provided)

Functional requirements

Integration and Unit Tests: No
Deployed Contracts Addresses: -
Contracts:

File: ./contracts/IExchange.sol
SHA3: a8ecb49754298f2fbc87f719c9bbc8831a64845eaa761b7d0d3360e53667cdfb

File: ./contracts/eSpace/CoreBridge_multipool.sol
SHA3: 9f448adf501fd5a1234c65ec148f6f23f90ce3427e631313513c1cbd90911a1e

File: ./contracts/PoolContext.sol
SHA3: 59121afe857833d89710964de2bfeb7c95faa3b7d4af0cb262e58a1744bfe451

File: ./contracts/PoSPoolmini.sol
SHA3: f1840f41f2956077a9f3f8909f136484435ffbb17e4cdfaacb63189f72160e88

www.hacken.io
5

https://developer.confluxnetwork.org/conflux-doc/docs/EVM-Space/intro_of_evm_space/
https://developer.confluxnetwork.org/conflux-doc/docs/EVM-Space/intro_of_evm_space/
https://github.com/article-i/espace/tree/in-test
https://github.com/article-i/core-pos-pool/tree/test
https://developer.confluxnetwork.org/conflux-doc/docs/EVM-Space/intro_of_evm_space/
https://developer.confluxnetwork.org/conflux-doc/docs/EVM-Space/intro_of_evm_space/

File: ./contracts/VotePowerQueue.sol
SHA3: 9631c1eed19018face1d6f26d630e5b621a3468947c9e06b9c3e0abc114efe06

File: ./contracts/eSpace/Exchangeroom.sol
SHA3: 03cec211403fcb140692215a1e7fb3561760d647f02a830b2474cbac6d0248e2

File: ./contracts/XCFX.sol
SHA3: 20aac8420a1000e1cf3e0cafaf71887e71e9ed7c053c15bbfd0c56c5e259e146

www.hacken.io
6

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions.

Medium
Medium-level vulnerabilities are important to fix;
however, they cannot lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that cannot have a
significant impact on execution.

www.hacken.io
7

Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 8 out of 10.

● Functional requirements are mostly provided.
● Technical description is provided.

Code quality
The total Code Quality score is 3 out of 10.

● The code contains duplicate patterns and contracts.
● The development environment is configured.
● Style guide violations found in code, including public functions

starting with underscores, deviations from mixed casing and variable
naming conventions, and missing camel-case usage.

○ Slither can be used to detect and fix these style guide
violations.

● There are two different repositories for code and one for the tests.

Test coverage
Test coverage of the project is 78.86%.

● Unit tests are provided, but several contracts are not covered at all
● There are scenarios implemented for basic behavior and user

interactions.

Security score
As a result of the audit, the code contains 5 low severity issues. The
security score is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 7.6.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

13 October 2022 23 9 6 5

www.hacken.io
8

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing
https://docs.soliditylang.org/en/v0.8.16/style-guide.html

05 December 2022 7 6 1 0

19 January 2023 5 0 1 0

24 January 2023 5 0 0 0

Checked Items

We have audited the Customers' smart contracts for commonly known and more
specific vulnerabilities. Here are some items considered:

Item Type Description Status

Default
Visibility

SWC-100
SWC-108

Functions and state variables visibility
should be set explicitly. Visibility
levels should be specified consciously.

Passed

Integer
Overflow and
Underflow

SWC-101
If unchecked math is used, all math
operations should be safe from overflows
and underflows.

Not Relevant

Outdated
Compiler
Version

SWC-102
It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma SWC-103

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked Call
Return Value SWC-104 The return value of a message call

should be checked. Passed

Access Control
&
Authorization

CWE-284

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction SWC-106

The contract should not be
self-destructible while it has funds
belonging to users.

Not Relevant

Check-Effect-
Interaction SWC-107

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation SWC-110 Properly functioning code should never

reach a failing assert statement. Passed

Deprecated
Solidity
Functions

SWC-111
Deprecated built-in functions should
never be used. Passed

www.hacken.io
9

https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-108
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-102
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-104
https://cwe.mitre.org/data/definitions/284.html
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-111

Delegatecall
to Untrusted
Callee

SWC-112
Delegatecalls should only be allowed to
trusted addresses. Not Relevant

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be
blocked by a specific contract state
unless required.

Passed

Race
Conditions SWC-114 Race Conditions and Transactions Order

Dependency should not be possible. Passed

Authorization
through
tx.origin

SWC-115
tx.origin should not be used for
authorization. Not Relevant

Block values
as a proxy for
time

SWC-116
Block numbers should not be used for
time calculations. Passed

Signature
Unique Id

SWC-117
SWC-121
SWC-122
EIP-155

Signed messages should always have a
unique id. A transaction hash should not
be used as a unique id. Chain
identifiers should always be used. All
parameters from the signature should be
used in signer recovery

Not Relevant

Shadowing
State Variable SWC-119 State variables should not be shadowed. Passed

Weak Sources
of Randomness SWC-120 Random values should never be generated

from Chain Attributes or be predictable. Not Relevant

Incorrect
Inheritance
Order

SWC-125

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Not Relevant

Calls Only to
Trusted
Addresses

EEA-Lev
el-2

SWC-126

All external calls should be performed
only to trusted addresses. Passed

Presence of
unused
variables

SWC-131
The code should not contain unused
variables if this is not justified by
design.

Passed

EIP standards
violation EIP EIP standards should not be violated. Not Relevant

Assets
integrity Custom Funds are protected and cannot be

withdrawn without proper permissions. Failed

User Balances
manipulation Custom

Contract owners or any other third party
should not be able to access funds
belonging to users.

Passed

Data
Consistency Custom Smart contract data should be consistent

all over the data flow. Passed

www.hacken.io
10

https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-113
https://swcregistry.io/docs/SWC-128
https://swcregistry.io/docs/SWC-114
https://swcregistry.io/docs/SWC-115
https://swcregistry.io/docs/SWC-116
https://swcregistry.io/docs/SWC-117
https://swcregistry.io/docs/SWC-121
https://swcregistry.io/docs/SWC-122
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-125
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://swcregistry.io/docs/SWC-126
https://swcregistry.io/docs/SWC-131
https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps
https://eips.ethereum.org/

Flashloan
Attack Custom

When working with exchange rates, they
should be received from a trusted source
and not be vulnerable to short-term rate
changes that can be achieved by using
flash loans. Oracles should be used.

Not Relevant

Token Supply
manipulation Custom

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
Customer.

Passed

Gas Limit and
Loops Custom

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Passed

Style guide
violation Custom Style guides and best practices should

be followed. Failed

Requirements
Compliance Custom The code should be compliant with the

requirements provided by the Customer. Passed

Environment
Consistency Custom

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Secure Oracles
Usage Custom

The code should have the ability to
pause specific data feeds that it relies
on. This should be done to protect a
contract from compromised oracles.

Not Relevant

Tests Coverage Custom

The code should be covered with unit
tests. Test coverage should be 100%,
with both negative and positive cases
covered. Usage of contracts by multiple
users should be tested.

Failed

Stable Imports Custom
The code should not reference draft
contracts, which may be changed in the
future.

Passed

www.hacken.io
11

System Overview

Nucleon is a project that rewards its users based on the amount of CFX
token they deposit:

● Exchangeroom.sol - A staking contract for CFX token.
● CoreBridge_multipool.sol - A bridge contract to connect Conflux POS

pools and Exchange rooms.
● PoSPoolmini.sol - A small Conflux POS pool contract with basic

usages.
● PoolAPY.sol - A library contract operates users' stake information.
● PoolContext.sol - An abstract contract to call Staking and Register

contracts functions.
● VotePowerQueue.sol - A library contract queues users' voting rights

and processes them sequentially.
● UnstakeQueueCFX.sol - A library contract adds users who unstake the

CFX token to the queue.
● IExchange.sol - An interface contract used for the PoSPoolmini

contract.

Privileged roles
● The owner of the CoreBridge_multipool contract can add, delete and

modify the pool addresses stored. The owner can set xCFX, bridge,
treasury, and trusted triggers addresses.

● The trusted triggers addresses of the CoreBridge_multipool contract
can synchronize all pools.

● The owner of the Exchangeroom contract can set lock periods, exchange
limits, pool name and bridge, exchange, storage, xCFX addresses.

● The bridge and exchange addresses of the Exchangeroom contract can
exchange CFX for xCFX, dequeue pending queue. These addresses can set
locked votes, unstaked votes. The bridge can set directly xcfxvalues,
xCFXincrease variables.

● The owner of the PoSPoolmini contract can register the pool contract
to the PoS internal contract. The owner can set bridge addresses,
lock periods, pool name, CFX count of one vote.

● The bridge of the PoSPoolmini contract can increase, decrease, and
withdraw CFX tokens. The bridge can claim all the interest from the
pool.

Risks
● The repository contains a code that is out of the audit scope. The

secureness of contracts that are not mentioned in the Scope sedition
of the report cannot be guaranteed.

www.hacken.io
12

Findings

Critical

1. Token Supply Manipulation

XCFX tokens are backed by CFX tokens. The function transfers the CFX
token amount to the _bridgeAddress and afterward mints XCFX tokens to
the Storage_addr address. The function has the onlyBridge modifier,
so this function can be executed from the _bridgeAddress address. If
_bridgeAddress executes this function, since the receiver address is
_bridgeAddress itself, _bridgeAddress will be sent the CFX token to
itself. The balance of the _bridgeAddress will not change because it
sends the CFX token to itself. Thus, this contract will be able to
mint XCFX without sending any CFX tokens.

This may lead to XCFX token inflation.

Path: ./contracts/eSpace/Exchangeroom.sol : handleCFXexchangeXCFX()

Recommendation: Change the CFX receiver address.

Status: Mitigated (The Customer states, the transaction mechanism
running between Conflux Espace and Core blockchains. _bridgeAddress
is the mirror address of CoreBridge_multipool which is deployed in
Conflux Core.)

2. Invalid Calculations

It is possible to perform mathematical operations between the
different units of the same type of variables, such as time units.
The function claims the CFX tokens of pools within the for loop. The
interest variable is iterated inside the for loop. When the loop is
finished, the interest variable will be equal to the last item of the
poolAddress list, and the systemCFXInterestsTemp variable calculation
will be made with this last element. However, this element does not
reflect the total value of all pools.

This may lead to calculation errors which may lead to imbalances.

Path: ./contracts/eSpace/CoreBridge_multipool.sol : claimInterests()

Recommendation: Implement all pools to the systemCFXInterestsTemp
calculation.

Status: Fixed (Revised commit:
04cce4a32eb000ae279e1f0e6744f4f2d5fea4e6)

3. Unverifiable Logic

PoolContext abstract contract uses mock staking and register
contracts. Since these contracts are for testing, everyone can access
the critical functions directly through staking and register
contracts.

www.hacken.io
13

This may lead to fund losses.

Path: ./contracts/PoolContext.sol

Recommendation: Remove the mock contract imports. Implement
production contracts.

Status: Fixed (Revised commit:
adf3d1579d5a8f8386e6278f7d171f0eee6a0cbb)

High

1. Data Consistency

The handleUnstake() function executes posPool.poolSummary(), it
performs operation according to the last updated pool attributes. The
pool attributes updates with the _updatePoolShot() function.
_updatePoolShot() function should have be called before use the
poolSummary() function. In handleUnstake(), executing
_updatePoolShot() before the poolSummary() is based on the condition
votePower > 0, if votePower is not greater than zero, then
handleUnstake() function will use unupdated pool attributes in the
calculations.

This may lead to calculation errors which may lead to imbalances.

Path: ./contracts/eSpace/CoreBridge_multipool.sol : handleUnstake()

Recommendation: Execute _updatePoolShot() before calling
poolSummary().

Status: Mitigated (The Customer states, the handleUnstake operation
of the pos pool will not be triggered until the current total
withdrawals reach 1000 cfx.)

2. Requirements Violation

The function copies the last item to the address index, then removes
the last item. The break was never used inside the for loop, so even
if the function removed the address from the array list, the for loop
would continue to work.

This may lead to the transactions being reverted.

Path: ./contracts/eSpace/CoreBridge_multipool.sol :
_delePoolAddress(), _changePoolAddress()

Recommendation: Use break keyword after using pop() function.

Status: Fixed (Revised commit:
04cce4a32eb000ae279e1f0e6744f4f2d5fea4e6)

3. Requirements Violation

The `transfer` function is used to send CFX to addresses. The
execution will fail if a sender is a contract with a fallback
function.

www.hacken.io
14

It would be impossible to use a system with another contract.

Path: ./contracts/eSpace/Exchangeroom.sol : CFX_exchange_XCFX()

Recommendation: Replace transfer and send functions with call or
provide special mechanism for interacting with a smart contract.

Status: Fixed (Revised commit:
adf3d1579d5a8f8386e6278f7d171f0eee6a0cbb)

4. Unverifiable Logic

collectEndedVotes() and sumEndedVotes() functions contains a check if
`q.items[i].endBlock > block.number`. If this check applies the
issued function a continue statement which will allow an execution to
continue with the next item. However, since this is a queue, the
items later then [i] will match the if check stated above, and the
execution will move on for no reason and will increase the Gas cost.

Since these functions are used in critical operations such as
withdrawals, the increased Gas consumption will not be optimal. In
addition, in extreme cases, this will cause out-of-Gas exceptions.

Path: /espace/contracts/VotePowerQueue.sol : collectEndedVotes(),
sumEndedVotes()

Recommendation: Use the `break` statement instead of `continue`.

Status: Mitigated (Since the system always uses sorted data, this
issue cannot be created.)

5. Requirements Violation

The contract uses mock contracts functions. Mock contract functions
are not working as expected.

register(), ​​​​increaseStake(), decreaseStake() functions should perform
CFX token transfer, but in fact, these functions do not perform CFX
token transfer.

The CFX token was not sent to the contract, withdrawStake() function
will not work as it will try to send the CFX token to the executor,
but the balance of the contract is insufficient.

Path: ./core-pos-pool/contracts/PoSPoolmini.sol : register(),
increaseStake(), decreaseStake(), withdrawStake()

Recommendation: Remove the mock contract imports. Implement
production contracts.

Status: Fixed (Revised commit:
04cce4a32eb000ae279e1f0e6744f4f2d5fea4e6)

6. Highly Permissive Role Access

The owner can burn tokens at any time without notifying the users.

Path: ./espace/contracts/XFXCX.sol: burnTokens()

www.hacken.io
15

Recommendation: Either notify the users about this functionality or
remove this functionality.

Status: Fixed (https://docs.nucleon.network/about-nucleon/risks)

Medium

1. Unoptimized Loop Usage

In the Exchangeroom contract, the functions take unstakeLen() as a
for loop repeat value and perform external calls while iterating over
them.

This can lead to out-of-Gas exceptions.

Paths: ./contracts/VotePowerQueue.sol : sumEndedVotes(),
collectEndedVotes(), queueItems(), queueItems,

./contracts/PoolAPY.sol : clearOutdatedNode(),

./contracts/VotePowerQueue.sol : queueItems(), collectEndedVotes(),
sumEndedVotes(), clear()

Recommendation: Implement array length limitations.

Status: Fixed (Revised commit:
04cce4a32eb000ae279e1f0e6744f4f2d5fea4e6)

2. Unchecked Return Value

The function dequeue returns Node. The call made to the
handleAllUnstakeTask() does not check its return value. This means
that the contract will continue its execution even if there is an
erroneous situation.

This can lead to unexpected behavior in the contract.

Path: ./espace/contracts/eSpace/Exchangeroom.sol :
handleAllUnstakeTask()

Recommendation: Implement a check of the returning value.

Status: Fixed (Revised commit:
04cce4a32eb000ae279e1f0e6744f4f2d5fea4e6)

3. Missing Balance Check before Transfer

The current balance of the contract should be checked before Ether
and token transfers.

This can lead to reverts.

Path: ./espace/contracts/PoSPoolmini.sol : withdrawStake()

www.hacken.io
16

https://docs.nucleon.network/about-nucleon/risks

Recommendation: Check that the contract balance is sufficient for
transfer before calling transfer.

Status: Mitigated (The Customer specified this function will be used
inside the CoreBridge_multipool and the contract has the necessary
checks.)

4. Checks-Effects-Interactions Violation

The contract state is being updated after external calls
(addTokens(), transfer(), burnTokens()) in the Exchangeroom.sol
contract.

This can lead to reentrancies, race conditions, or Denial-of-Service
vulnerabilities.

Path: ./contracts/eSpace/CoreBridge_multipool.sol : handleUnstake()

Recommendation: Implement function according to the
Checks-Effects-Interactions pattern or use ReentrancyGuards.

Status: Fixed (Revised commit:
35299a5071cda0ee1b51659c5608127b7ca92e9f)

5. Unverifiable Logic

The Exchangeroom contract uses IXCFX contract, which is not in the
audit scope.

This can lead to unexpected behaviors.

Path: ./espace/contracts/eSpace/Exchangeroom.sol

Recommendation: Use audited contracts.

Status: Mitigated (The implementation of the issued contract has been
provided.)

6. Tautology

Since the contract uses uint values _poolSummary.unlocked can never
be smaller than zero.

Path: ./core-pos-pool/contracts/PoSPoolmini.sol : withdrawStake()

Recommendation: Remove related require statement.

Status: Fixed (Revised commit:
04cce4a32eb000ae279e1f0e6744f4f2d5fea4e6)

7. Redundant Functions

The fallback and receive functions are redundant and increase the
code size.

In addition to that, since there is no way to withdraw ETH from the
contract, these functions will cause more ETH to be locked on the
contract.

www.hacken.io
17

Path: ./core-pos-pool/contracts/PoSPoolmini.sol : fallback(),
receive()

Recommendation: Delete these functions.

Status: Fixed (Revised commit:
35299a5071cda0ee1b51659c5608127b7ca92e9f)

8. Unoptimized Loop Usage

In the CoreBridge_multipool contract, the claimInterests(),
withdrawVotes() functions perform external calls while iterating over
arrays.

This can lead to out-of-Gas exceptions.

Path: ./core-pos-pool/contracts/CoreBridge_multipool.sol :
claimInterests(), withdrawVotes()

Recommendation: Implement array length limitations.

Status: Fixed (Revised commit:
35299a5071cda0ee1b51659c5608127b7ca92e9f)

9. Contradiction

According to _setLockPeriod() function, the _poolLockPeriod_out value
should be greater than _poolLockPeriod_in value. However, in the
_setLockPeriod() the validation is missed.

Path: ./contracts/Exchangeroom.sol: _setLockPeriod()

Recommendation: Implement checks to enforce that _poolLockPeriod_out
is greater than _poolLockPeriod_in.

Status: Fixed (Revised commit:
b793f4db6cf6644bd046ae25c1c5c19682c45fb0)

10. Contradiction

The implementation contains commented code which looks like it should
be uncommented to finalize the code.

The contract contains commented function.

Paths: ./contracts/VotePowerQueue.sol: clear(),

./eSpace/contracts/VotePowerQueue.sol:

Recommendation: Remove the commented code or finalize its
implementation.

Status: Fixed (Revised commit:
b793f4db6cf6644bd046ae25c1c5c19682c45fb0)

Low

www.hacken.io
18

1. Duplicate Array Items

It is possible to add the same addresses to the list again.

This may lead to unnecessary Gas consumption.

Path: ./contracts/eSpace/CoreBridge_multipool.sol: _addPoolAddress()

Recommendation: Implement duplicate checks.

Status: Reported

2. Floating Pragma

The project uses floating pragma ^0.8.0

Paths: ./espace/contracts/VotePowerQueue.sol

./espace/contracts/eSpace/UnstakeQueueCFX.sol

./espace/contracts/eSpace/Exchangeroom.sol

./core-pos-pool/contracts/VotePowerQueue.sol

./core-pos-pool/contracts/PoolAPY.sol

./core-pos-pool/contracts/PoolContext.sol

./core-pos-pool/contracts/PoSPoolmini.sol

./contracts/eSpace/CoreBridge_multipool.sol

Recommendation: Consider locking the pragma version whenever possible
and avoid using a floating pragma in the final deployment.

Status: Fixed (Revised commit:
04cce4a32eb000ae279e1f0e6744f4f2d5fea4e6)

3. State Variable Default Visibility

Labeling the visibility explicitly makes it easier to catch incorrect
assumptions about who can access the variable.

Paths: ./contracts/eSpace/Exchangeroom.sol: XCFX_address,
Storage_addr

./contracts/eSpace/CoreBridge_multipool.sol :
CFX_COUNT_OF_ONE_VOTE, CFX_VALUE_OF_ONE_VOTE, Unstakebalanceinbridge,
identifier, trusted_node_trigers

Recommendation: Variables can be specified as being public, internal,
or private. Explicitly define visibility for all state variables.

Status: Fixed (Revised commit:
04cce4a32eb000ae279e1f0e6744f4f2d5fea4e6)

4. Redundant Variable

The usage of zero_addr is unnecessary for the contract.

www.hacken.io
19

Paths: ./contracts/eSpace/Exchangeroom.sol : initialize()

./contracts/PoSPoolmini.sol : initialize()

Recommendation: Remove assignments inside the initialize function.

Status: Fixed (Revised commit:
04cce4a32eb000ae279e1f0e6744f4f2d5fea4e6)

5. Redundant Assignment

ONE_DAY_BLOCK_COUNT, CFX_COUNT_OF_ONE_VOTE, CFX_VALUE_OF_ONE_VOTE
variables already assigned when variable defined, then initialize
function assigned the same value again.

Paths: ./core-pos-pool/contracts/PoSPoolmini.sol: initialize()

Recommendation: Remove assignments inside the initialize function.

Status: Fixed (Revised commit:
35299a5071cda0ee1b51659c5608127b7ca92e9f)

6. Redundant Calculation

The register function checks if the votePower with a require
statement, and then checks multiplies CFX_VALUE_OF_ONE_VOTE by
votePower, which is 1.

While calculating the Unstakebalanceinbridge, the code divides
Unstakebalanceinbridge to CFX_VALUE_OF_ONE_VOTE and then multiplies
it with CFX_VALUE_OF_ONE_VOTE.

Paths: ./core-pos-pool/contracts/PoSPoolmini.sol: : register()

./contracts/eSpace/CoreBridge_multipool.sol: handleUnstake()

Recommendation: Remove redundant multiplication.

Status: Fixed (Revised commit:
04cce4a32eb000ae279e1f0e6744f4f2d5fea4e6)

7. Natspec Mismatch

The ExchangeSummary definition states that different fields than the
actual struct defined below.

Path: ./contracts/eSpace/Exchangeroom.sol

Recommendation: Re-define the Natspec.

Status: Fixed (Revised commit:
adf3d1579d5a8f8386e6278f7d171f0eee6a0cbb)

8. Redundant Function

The _blockNumber() function is redundant since the block.number is a
globally defined variable in Solidity.

www.hacken.io
20

The initialize() function is defined as public and has no parameter.
The function is called inside the constructor. Since the function has
no parameter and is called inside the constructor, there is no need
for initialize() function.

Paths: ./contracts/eSpace/Exchangeroom.sol: _blockNumber()

./core-pos-pool/contracts/PoolContext.sol : _blockNumber()

./contracts/eSpace/CoreBridge_multipool.sol : initialize()

Recommendation: Remove redundant function.

Remove initialize() function and imported initializer contract.
Implement all of the initialize() function logic to the constructor.

Status: Fixed (Revised commit:
adf3d1579d5a8f8386e6278f7d171f0eee6a0cbb)

9. Missing Zero Address Validation

Address parameters are being used without checking against the
possibility of 0x00.

This can lead to unwanted external calls to 0x0.

Path: ./contracts/PoSPoolmini.sol : _setbridges()

Recommendation: Implement zero address checks.

Status: Reported

10. Hardcoded Maths

Hard-coded values are used in computations.

Path: ./contracts/eSpace/Exchangeroom.sol: initialize(), XCFX_burn(),

Recommendation: Convert these variables into constants.

Status: Reported. (Putting the exact same values into constants would
not lead to any changes in the event of a hard fork. As the official
documentation states, the values of the constant variables cannot be
changed after the contract construction.)

11. Redundant Use of SafeMath

Since Solidity v0.8.0, the overflow/underflow check is implemented
via ABIEncoderV2 on the language level - it adds validation to the
bytecode during compilation.

There is no need to use the SafeMath library.

Path: ./contracts/eSpace/Exchangeroom.sol

Recommendation: Remove the SafeMath library.

Status: Reported

www.hacken.io
21

https://docs.soliditylang.org/en/v0.8.17/contracts.html?highlight=constant#constant-and-immutable-state-variables
https://docs.soliditylang.org/en/v0.8.17/contracts.html?highlight=constant#constant-and-immutable-state-variables

12. Setting Uint64 Values to Uint256 Variables

The _setLockPeriod() takes two uint64 parameters and sets them
directly to uint256 variables. This set operation is syntactically
correct but can lead to miscalculations in mathematical operations.

Paths: ./contracts/eSpace/Exchangeroom.sol: _setLockPeriod

./contracts/eSpace/CoreBridge_multipool.sol:
_setPoolUserShareRatio

Recommendation: Re-adjust this setting.

Status: Fixed (Revised commit:
adf3d1579d5a8f8386e6278f7d171f0eee6a0cbb)

13. Unused Function

The isContract() function is never used.

Paths: ./contracts/eSpace/Exchangeroom.sol: isContract

./contracts/VotePowerQueue.sol : queueItems(), clear(),

./contracts/eSpace/CoreBridge_multipool.sol :
queryespacexCFXincrease(), queryInterest()

Recommendation: Remove unused function.

Status: Fixed (Revised commit:
adf3d1579d5a8f8386e6278f7d171f0eee6a0cbb)

14. Missing Events

Events for critical state changes should be emitted for tracking
things off-chain.

Paths: ./contracts/Exchangeroom.sol : _setLockPeriod(),
_setminexchangelimits(), _setPoolName(), _setBridge(),
_setCoreExchange(), _setStorageaddr(), _setXCFXaddr(),
setxCFXValue(), setlockedvotes(), handlexCFXadd(), handleUnstake()

./contracts/CoreBridge_multipool.sol : _clearTheStates(),
_setPoolUserShareRatio(), _setCfxCountOfOneVote(),
_settrustedtrigers(), _seteServicetreasuryAddress(),
_seteSpacebridgeAddress(), _seteSpacexCFXAddress(),
_seteSpaceExroomAddress(), _delePoolAddress(), _changePoolAddress(),
_addPoolAddress()

./contracts/PoSPoolmini.sol : _set_bridges(), _setLockPeriod(),
_setPoolName(), _setCfxCountOfOneVote(), _reStake(),
claimAllInterest(),

Recommendation: Create and emit related events.

Status: Fixed (Revised commit:
adf3d1579d5a8f8386e6278f7d171f0eee6a0cbb)

15. Unused Variable

www.hacken.io
22

The variable RATIO_BASE is unused.

Path: ./contracts/eSpace/Exchangeroom.sol:

Recommendation: Remove unused variable.

Status: Fixed (Revised commit:
04cce4a32eb000ae279e1f0e6744f4f2d5fea4e6)

16. Redundant Modifier

getback_CFX() function calls the internal withdraw() function, called
function has the same onlyRegisted() modifier.

There is no need to use the same modifier again, this will increase
the Gas consumption.

Path: ./contracts/Exchangeroom.sol : getback_CFX()

Recommendation: Remove onlyRegisted() modifier from withdraw()
function.

Status: Fixed (Revised commit:
adf3d1579d5a8f8386e6278f7d171f0eee6a0cbb)

17. Misleading Modifier Name

According to the modifier logic msg.sender can be a bridge or
exchange contract address. onlyBridge() implements logic that
contradicts its name.

This makes code harder to read.

Path: ./contracts/Exchangeroom.sol : onlyBridge()

Recommendation: Change the modifier name to fit the logic.

Status: Mitigated. (Implemented this way dues to future versions.)

18. Redundant Storage Usage

The function saves variables to storage multiple times instead of
saving values to a local variable.

This will increase Gas consumption.

Path: ./contracts/Exchangeroom.sol : CFX_exchange_XCFX(),
XCFX_burn(), withdraw()

Recommendation: Save the values returned from the
_exchangeSummary.totalxcfxs, userSummaries[msg.sender].unlocked
variables to the local memory. Use memory variables in the process.

Status: Fixed (Revised commit:
adf3d1579d5a8f8386e6278f7d171f0eee6a0cbb)

19. Code Duplication

uint256 temp_amount = userOutqueues[msg.sender].collectEndedVotes();
www.hacken.io

23

userSummaries[msg.sender].unlocked += temp_amount;

userSummaries[msg.sender].unlocking -= temp_amount;

These code blocks are used the same way in the two functions. There
is no need to repeat the code.

This will increase the contract byte size.

Path: ./contracts/eSpace/Exchangeroom.sol: XCFX_burn(), withdraw()

Recommendation: Create function for these code blocks. Use the
created function for XCFX_burn() and withdraw() functions.

Status: Fixed (Revised commit:
adf3d1579d5a8f8386e6278f7d171f0eee6a0cbb)

20. Redundant Variable

_exchangeSummary.totalxcfxs is always equal to XCFX token total
supply. There is no need to create totalxcfxs variable.

This will increase the Gas consumption.

Path: ./contracts/Exchangeroom.sol

Recommendation: Use XCFX token total supply in the calculations.

Status: Mitigated. (Kept for information purposes.)

21. Commented Code Parts

Commented parts of code in a contract. They will not cause security
issues but will make code less clear.

Paths: ./contracts/eSpace/Exchangeroom.sol,
./contracts/eSpace/CoreBridge_multipool.sol,

./contracts/IExchange.sol

Recommendation: Remove commented parts of code.

Status: Fixed (Revised commit:
b793f4db6cf6644bd046ae25c1c5c19682c45fb0)

22. Boolean Equality

Boolean constants can be used directly and do not need to be compared
to true or false.

Path: ./contracts/eSpace/CoreBridge_multipool.sol:
Only_trusted_triggers

Recommendation: Remove boolean equality.

Status: Fixed (Revised commit:
35299a5071cda0ee1b51659c5608127b7ca92e9f)

23. Style Guide Violation

www.hacken.io
24

The contract names and functions do not follow the official
guidelines.

The provided projects should follow the official guidelines.

Paths: ./contracts/PoSPoolmini.sol

./contracts/eSpace/storagesbridge.sol

./contracts/eSpace/systemstorages.sol

./contracts/eSpace/Exchangeroom.sol

./contracts/eSpace/CoreExchange.sol

./contracts/eSpace/CoreBridge_multipool.sol

Recommendation: Follow the official Solidity guidelines.

Status: Reported

www.hacken.io
25

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed by the best industry
practices at the date of this report, with cybersecurity vulnerabilities
and issues in smart contract source code, the details of which are
disclosed in this report (Source Code); the Source Code compilation,
deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted to and reviewed, so it may not be relevant after any
modifications. Do not consider this report as a final and sufficient
assessment regarding the utility and safety of the code, bug-free status,
or any other contract statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, Consultant
cannot guarantee the explicit security of the audited smart contracts.

www.hacken.io
26

